To the Moon and back: The Apollo 11 lunar landing, 50 years on

FRANCE 24 English
Published on Jul 15, 2019

Subscribe to France 24 now:

FRANCE 24 live news stream: all the latest news 24/7

Five decades after Neil Armstrong became the first man to set foot on the Moon, FRANCE 24 takes you inside NASA. Our reporters meet those who made the Apollo programme possible and take you to the middle of the Utah desert, where men and women are preparing the next step in space exploration.

By: Sylvain ROUSSEAU (

Five decades after Neil Armstrong became the first man to set foot on the Moon, FRANCE 24 takes you inside NASA. Our reporters meet those who made the Apollo programme possible and take you to the middle of the Utah desert, where men and women are preparing the next step in space exploration.

On July 20, 1969, US astronaut Neil Armstrong became the first person to set foot on the surface of the Moon. His words went down in history: “That’s one small step for man, one giant leap for mankind”.

Half a century later, Tom Moser, Gerry Griffin and Jack Lousma have forgotten nothing of the adventure. At the time, they were an engineer, a flight director and an astronaut. They are just some of the 400,000 people who worked to make possible what they call “the greatest technological achievement of the twentieth century.”

Making the Moon the ‘eighth continent’

The space conquest of the 1960s represented the climax of the Cold War between the United States and the USSR. Today, the geopolitical context may have changed, but the space race continues, and with more players. While China recently landed a spacecraft on the far side of the Moon — a first — Donald Trump has announced that the US will send Americans back there by 2024. The goal, this time, is to settle on the Moon, which would justify its nickname of “eighth continent”. But this means building new space vehicles to get there, and the funds involved are considerable: more than $30 billion.

To lighten the financial burden, NASA has decided to turn to private enterprise, such as Elon Musk’s SpaceX and Jeff Bezos’s Blue Origin, both companies belonging to billionaires who want to develop space tourism. But much smaller and lesser known firms are also involved, such as Intuitive Machines. With its 86 employees, it will be responsible for delivering equipment to the Moon for the US space agency – the mission of a lifetime for its founders.

The United States is more determined than ever to regain its dominant position in space exploration. But for Jim Bridenstine, the NASA administrator, the ultimate goal is even further away. The focus is now turning to Mars, the red planet.


Translators:  Richard Branam, Mike Zonta, Hanz Bolen, Melissa Goodnight, Alex Gambeau, Ben Gilberti

Family can be needed.
Family can be painful.
Family can be present or absent.

5th Step Conclusions:

1)  Truth dwells everywhere in a family/household of perfect, harmonious, effortless formation, with only masters (no slaves) and lacking only absence.

2)  Family is the ever presence, oneness and harmony of Truth.

3)  Truth and love is the One Family of All Existing Souls

4)  One Infinite Consciousness is always fully illuminating the Truth about the limitlessness of love — by the unbroken continuity of BELONGING that is revealed in every precious expression of Itself.

5)  Truth I Am, individuated, is Presence, Mastery, and Dominion, protecting, celebrating all as kin. Truth I Am is Kin, Intimately, Powerfully Celebrating All.

6)  Truth is the Intimate eloquent Domestication, this elegant Companionship, is Universally Principled right of property, Being the household Master of the party of living life.
Truth is I Am, this soothing, Powerful Ability, Identity is Innately Instinctive compulsion’s, this QuintEssential Sum Totality Consciousness Individuated, is the Indivisibly Principled self Soothing Family.

All Translators are welcome to join this group.  See BB Upcoming Events.

Biography: Weegee

Photo by Weegee

From Wikipedia, the free encyclopedia

Weegee-International Center of Photography.jpg
Ascher (Usher) Fellig

June 12, 1899

Died December 26, 1968 (aged 69)

Other names Arthur Fellig
Occupation Photographer
Known for Street photography of crime scenes or emergencies

Weegee was the pseudonym of Arthur (Usher) Fellig (June 12, 1899 – December 26, 1968), a photographer and photojournalist, known for his stark black and white street photography.[1] Weegee worked in ManhattanNew York City‘s Lower East Side, as a press photographer during the 1930s and 1940s, and he developed his signature style by following the city’s emergency services and documenting their activity.[2] Much of his work depicted unflinchingly realistic scenes of urban life, crime, injury and death. Weegee published photographic books and also worked in cinema, initially making his own short films and later collaborating with film directors such as Jack Donohue and Stanley Kubrick.


Weegee was born Ascher (later anglicized to Usher) Fellig in Złoczów (now ZolochivUkraine), near Lemberg in Austrian Galicia. His given name was changed to Arthur when he emigrated with his family to New York in 1909. There he took numerous odd jobs, including working as a street photographer of children on his pony[3] and as an assistant to a commercial photographer. In 1924 he was hired as a darkroom technician by Acme Newspictures (later United Press International Photos). He left Acme in 1935 to become a freelance photographer. Describing his beginnings, Weegee stated:

In my particular case I didn’t wait ’til somebody gave me a job or something, I went and created a job for myself—freelance photographer. And what I did, anybody else can do. What I did simply was this: I went down to Manhattan Police Headquarters and for two years I worked without a police card or any kind of credentials. When a story came over a police teletype, I would go to it. The idea was I sold the pictures to the newspapers. And naturally, I picked a story that meant something.[4]

He worked at night and competed with the police to be first at the scene of a crime, selling his photographs to tabloids and photographic agencies.[5] His photographs, centered around Manhattan police headquarters, were soon published by the Herald TribuneWorld-TelegramDaily NewsNew York PostNew York Journal AmericanSun, and others.[citation needed]

In 1957, after developing diabetes, he moved in with Wilma Wilcox, a Quaker social worker whom he had known since the 1940s, and who cared for him and then cared for his work.[6] He traveled extensively in Europe until 1964, working for the London Daily Mirror and on a variety of photography, film, lecture, and book projects.[7] On December 26, 1968, Weegee died in New York at the age of 69.[8]


The origin of Fellig’s pseudonym is uncertain. One of his earliest jobs was in the photo lab of The New York Times, where (in a reference to the tool used to wipe down prints) he was nicknamed “Squeegee Boy”. Later, during his employment with Acme Newspictures, his skill and ingenuity in developing prints on the run (e.g., in a subway car) earned him the name “Mr. Squeegee”.[9] He may subsequently have been dubbed “Weegee”–a phonetic rendering of Ouija–because his instant and seemingly prescient arrivals at scenes of crimes or other emergencies seemed as magical as a Ouija board.[9][2]

Photographic career

Photographic technique

Most of his notable photographs were taken with very basic press photographer equipment and methods of the era, a 4×5 Speed Graphic camera preset at f/16 at 1/200 of a second, with flashbulbs and a set focus distance of ten feet.[10] He was a self-taught photographer with no formal training.[11] He is often said—incorrectly—to have developed his photographs in a makeshift darkroom in the trunk of his car.[12] While Fellig would shoot a variety of subjects and individuals, he also had a sense of what sold best:

Names make news. There’s a fight between a drunken couple on Third Avenue or Ninth Avenue in Hell’s Kitchen, nobody cares. It’s just a barroom brawl. But if society has a fight in a Cadillac on Park Avenue and their names are in the Social Register, this makes news and the papers are interested in that.[13]

Weegee is spuriously credited for answering “f/8 and be there” when asked about his photographic technique.[14] Whether or not he actually said it, the saying has become so widespread in photographic circles as to have become a cliché.[15][16]

Some of Weegee’s photos, like the juxtaposition of society grandes dames in ermines and tiaras and a glowering street woman at the Metropolitan Opera (The Critic, 1943), were later revealed to have been staged.[17][18]

Late 1930s to mid-1940s

Weegee’s rubber stamp for signing his pictures

In 1938, Fellig became the only New York freelance newspaper photographer with a permit to have a portable police-band shortwave radio. Weegee worked mostly at night; he listened closely to broadcasts and often beat authorities to the scene.[19]

Five of his photographs were acquired by the Museum of Modern Art (MoMA) in 1943. These works were included in its exhibition Action Photography.[20] He was later included in “50 Photographs by 50 Photographers”, another MoMA show organized by photographer Edward Steichen,[20] and he lectured at the New School for Social Research. Advertising and editorial assignments for magazines followed, including Life and beginning in 1945, Vogue.

Naked City (1945) was his first book of photographs. Film producer Mark Hellinger bought the rights to the title from Weegee.[20] In 1948, Weegee’s aesthetic formed the foundation for Hellinger’s film The Naked City. It was based on a gritty 1948 story written by Malvin Wald about the investigation into a model’s murder in New York. Wald was nominated for an Academy Award for his screenplay, co-written with screenwriter, Albert Maltz, who would later be blacklisted in the McCarthy-era.[21] Later the title was used again for a naturalistic television police drama series, and in the 1980s, it was adopted by a band, Naked City, led by the New York experimental musician John Zorn.[citation needed]

According to the commentary by director Robert Wise, Weegee appeared in the 1949 film The Set-Up, ringing the bell at the boxing match.[citation needed]

1950s and 1960s

Weegee experimented with 16mm filmmaking himself beginning in 1941 and worked in the Hollywood industry from 1946 to the early 1960s, as an actor and a consultant. He was an uncredited special effects consultant[22] and credited stills photographer for Stanley Kubrick‘s 1964 film Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb. His accent was one of the influences for the accent of the title character in the film, played by Peter Sellers.[22]

In the 1950s and 1960s, Weegee experimented with panoramic photographs, photo distortions and photography through prisms. Using a plastic lens, he made a famous photograph of Marilyn Monroe in which her face is grotesquely distorted yet still recognizable.[23] For the 1950 movie The Yellow Cab Man, Weegee contributed a sequence in which automobile traffic is wildly distorted. He is credited for this as “Luigi” in the film’s opening titles. He also traveled widely in Europe in the 1960s, where he photographed nude subjects. In London he befriended pornographer Harrison Marks and the model Pamela Green, whom he photographed.[citation needed]

In 1962[24], Weegee starred as himself in a “Nudie Cutie” exploitation film, intended to be a pseudo-documentary of his life. Called The ‘Imp’probable Mr. Wee Gee, it saw Fellig apparently falling in love with a shop-window dummy that he follows to Paris, all the while pursuing or photographing various women.[25]

More at:

J. Cole – False Prophets

Published on Dec 5, 2016

Music Video for “False Prophets” by J. Cole Directed by Scott Lazer ‘4 Your Eyez Only’ by J. Cole available everywhere 12/9
False Prophets
Somebody shoulda told me it would be like this
Be like this, be like this
Somebody shoulda told me it would be like this
Yeah, life is a balance
You lose your grip, you can slip into an abyss
No doubt you see these niggas trippin’
Ego in charge of every move, he’s a star
And we can’t look away
Due to the days that he caught our hearts
He’s fallin’ apart, but we deny it
Justifying that half-ass shit he dropped, we always buy it
When he tell us he a genius but it’s clearer lately
It’s been hard for him to look into the mirror lately
There was a time when this nigga was my hero, maybe
That’s the reason why his fall from grace is hard to take
‘Cause I believed him when he said his shit was purer and he
The type
Source: LyricFind

Don’t Confuse Capitalism with Corporatism

Jason Vines/Flickr

Populist movements are rising up, decrying the “danger and destruction” of capitalism. This false populist sentiment is perpetuated by four groups: politicians manipulating the “us vs them” mentality, the ultra-rich who wish to see others not succeed, university professors who have either never worked in the real world or have spent so much time in academia they forgot what the real world was like and blindly idealistic college students that also embrace “microaggressions” and “trigger warnings.”It is an easy argument to make: the rich were made rich by a rotten capitalist system that oppresses those noble, hardworking innocents who do the actual labor. They want the system to be more fair-i.e. slanted their way- and even to cap earnings and opportunities. They witness a capitalist system that controls their lives, is in bed with government, can buy all the influence it wants, randomly destroys communities and cold-bloodedly lays off thousands of workers, simply to save money or increase stock prices.

Capitalism, however, is not the culprit though. It is corporatism, the collective mentality of the corporation that views workers as interchangeable and customers as lacking options. We do not live in a free market: we live in a market controlled by the interrelation between monolithic corporations, Wall Street and the Government. These three entities are what control our economic and professional opportunities, not capitalism.

Capitalism, specifically small business/entrepreneurial capitalism, is the antidote to this. SB/E Capitalism is a structure that allows anyone to achieve their goals inside the system or outside of it. It’s a system that is not rigged to the highest bidder. If the United States operated in a pure free market system, then the bailouts to Wall Street, the auto unions and the auto industry would not have happened. Those who engaged in reckless business practices would have been eaten up by the market & the void created by these organizations would have been filled with new entrants.

It is corporatism that has created the pathway for GE, Goldman Sachs, Hollywood and GM among others to have incredible access to the White House and Congress, not to mention access to bailout money. It is corporatism that has allowed tech companies such as Google, Facebook, Apple, and Microsoft to partner with the NSA, providing data on millions of their users to the shadowy gov’t agency. They are able to act with impudence because there is no real structure for new organizations to challenge them. Government works to protect its friends and prevent new entrants from becoming major players in any industry.

The system in play now is designed to provide the illusion of opportunity, when in reality the opportunity is there only for a selected few. Corporatism is the economic partner of communism and totalitarianism, seeking to decrease opportunity and force allegiance and servitude. It is corporatism that creates the rules of industry and barriers to entry and it is corporations that purchase votes in their favor and prevent start-ups from challenging them. It is corporations that control the media, determining what we hear, see and how our opinions are formed.

No one in power is willing to give it up. It is far easier to buy the protection needed from the government or simply buy those businesses that could challenge it-looking at you, Microsoft. A pure small business/entrepreneurial capitalist system is the antidote to this rigged structure.

Opening up the fields to innovation and market access would create greater wealth and opportunities for millions across the country and the world. This system would also create access to greater education and freedom. A true capitalist system would put the burden of responsibility and accountability on the individual and force people to work harder, take chances and own their success or failure. With the control structure that is in place now, there is an incredible de-emphasis on personal responsibility or initiative.

It is small business and entrepreneurial capitalism that will solve the problems of poverty and corruption around the world. For decades, we have seen government and corporate actions yield no progress yet fools think the answer is more of this, not less. This is why corporations and government oppose a true capitalist system. It challenges their power. Oligarchs are not needed; that is what they fear the most.

If you’re interested in writing for International Policy Digest – please send us an email via

2017 ICSI Public Lecture: David Harvey | The New School

The New School
Published on Jun 19, 2017

Sponsored by The New School for Social Research (

The Institute for Critical Social Inquiry ( will open part of its programming to the public – a series of lectures taught by this Summer’s faculty cohort of K. Anthony Appiah (Professor of Philosophy and Law, NYU), David Harvey (Professor of Anthropology and Geography, CUNY), and Michael Taussig (Professor of Anthropology, Columbia).

David Harvey’s lecture is entitled “Visualizing Capital”.

Marx defines capital as “value in motion.” Is there a way to map and visualize how capital moves around within the totality of a capitalist mode of production? And in what ways does creating such a visualization help clarify what Marx was attempting to do in the three volumes of Capital that he planned but never completed?

– Ann Stoler, Willy Brandt Distinguished Professor of Anthropology and History

– David Harvey, Distinguished Professor of Anthropology and Geography, The Graduate Center, CUNY

About the Institute:
The Institute for Critical Social Inquiry (ICSI) is designed to provide advanced graduate students and junior faculty from around the world with the opportunity to spend one week at the New School’s campus in Greenwich Village working closely with some of the most distinguished thinkers shaping the course of contemporary social inquiry. Each of these scholars will teach a week-long seminar on a foundational thinker or topic of contemporary concern in a series of hands-on, intensive, and intimate sessions.

Location: John L. Tishman Auditorium, University Center
63 Fifth Avenue, Room U100, New York, NY 10003
Monday, June 12, 2017 at 5:30 pm to 7:00 pm

Real Buzz Aldrin Spends 50th Straight Year On Moon Trying To Signal Earth To Warn Of Imposter

July 19, 2019 (

VALLIS ALPES, THE MOON—Yelling and waving his arms frantically in the hope that someone out there was paying attention, the real Buzz Aldrin was reportedly spending his 50th year in a row on the moon Friday trying to warn Earth of the imposter who had taken his place. “Come on, I’m right here, dammit,” shouted the actual 89-year-old astronaut who had been stranded on the lunar surface during the Apollo 11 mission after being replaced by a shape-shifting extraterrestrial who had usurped his life on Earth. “The man you know as Buzz Aldrin isn’t me, it’s some goddamn alien scum. Hasn’t anyone noticed, after all this time? You fools, you’re in danger! Please! Someone! Anyone! I’m right up here!” At press time, Aldrin was reportedly cursing himself once again for having slept through the entirety of the Apollo 12 and Apollo 14 moon missions.

Mission Out of Control

NASA/Getty Images

Following the Moon landing, NASA went through a postpartum depression on a grand scale.


May 13, 1984 (


Why NASA’s space shots don’t reach for the stars.

While Neil Armstrong was taking his giant step for mankind on the Moon in 1969, the National Aeronautics and Space Administration was soaring back on Earth. By meeting President Kennedy’s 1961 challenge to land a man on the Moon within the decade, NASA had proven communism was no match for American knowhow and the American way of life. A decade of race riots, assassinations and war culminated with the stars and stripes planted in the Sea of Tranquility.

But following the Moon landing, NASA went through a postpartum depression on a grand scale. Employment in the space program, once 420,000, declined to 160,000 by 1971. Laboratories closed. NASA’s budget, once nearly $6 billion, dropped to slightly more than half that amount. After enjoying high status, the excitement of working on a top-priority challenge, and all the money it needed, NASA was faced with the question: Now what?

The agency responded by asking for the moon. In 1970 and 1971 NASA requested money for a reusable space shuttle to carry cargo to space cheaply, and for a 100-man orbiting space station by 1980, and for a $24 billion manned mission to Mars, and for a commitment to a lunar base. To fill in what it thought would be a gap in manned space flight between the last Apollo mission and the start of the shuttle, NASA even proposed a mini-shuttle, which it admitted had limited use.

In short, NASA had gotten hooked on the size and glamour of manned programs. It’s easy to see why. NASA was—and still is—convinced that only manned missions can focus public interest in space and persuade Congress to fund NASA’s programs. “Supporting astronomy is like supporting ballet,” says Alexander Dessler, director of the Marshall Space Flight Center in Huntsville, Alabama. “There’s no clear, immediate benefit.” But by showing Americans performing dangerous missions in space, NASA captured public attention with a human drama. NASA has always understood the P.R. value of human derring-do. When choosing astronauts for its first manned program. Mercury, NASA tried to find candidates who fit the public’s conception of clean-living All-Americans who could represent the United States in its race with the Russians. Once the astronauts were chosen. Life magazine airbrushed their lives, and NASA changed their role from passenger to the more heroic job of pilot. Astronauts can also make speeches and testify before Congress—a skill no satellite will ever master.

But public attention is not the only advantage NASA gets from manned programs. “It’s difficult to know where the public interest in seeing man in space stops, and NASA’s inclination to keep people employed starts,” says a Senate staffer. No. 1 on NASA’s current list of eight goals is “maintain the institution.”

If NASA wants to keep its scientists and engineers busy, the best way is through manned programs. Manned spacecraft are larger, more expensive, and more time consuming to build than unmanned vehicles because they require food, water, oxygen, and back-up systems that are not needed for unmanned vehicles. Manned vehicles need to bring astronauts safely back to Earth, which necessitates more tests, longer trips, and re-entry hardware such as heat shields. Most important, a manned program, unlike a scientific program, usually implies a commitment to multiple launches and ambitious space goals.

NASA not only worries about employing its own personnel, it also looks out for the aerospace industry. As with the Pentagon, the line between government and industry blurs when the two work together on twenty year projects. “We work so closely together that we jokingly call ourselves ‘partners-in-crime,’ “ says Peter Eaton of NASA’s Expendable Launch Vehicle office, speaking of NASA and the McDonnell Douglas Corporation, which makes the Delta rocket. It is commonplace for NASA to recruit industry engineers and for NASA officials to leave the agency to work for a contractor.

Although NASA had asked in the early 1970s for funds for just about every manned project imaginable, Congress and President Nixon did not comply. With his budget stretched by the Vietnam War, Nixon approved only the project NASA touted as a money-saver: the space shuttle. The shuttle, it was claimed, was a kind of cheap, efficient truck that would haul materials and satellites into orbit. It would be less expensive than expendable rockets because while it would need a new fuel tank and refurbished booster rockets for each mission, the airplane shaped orbiter would be reusable. At a development cost set for $5 billion and a much lower operating cost than disposable rockets, the shuttle would lower the cost of commuting to space and therefore of all future space missions.

From the beginning the shuttle proved balky. Scheduled to launch in 1977, it didn’t make its first test until April 1981 and wasn’t operational until November 1982. By the time the shuttle was open for business, development costs had ballooned from $5 billion to S15.5 billion. NASA is still ironing out minor problems, but the shuttle’s real flaw won’t go away: it’s no cheaper to operate than NASA’s old Chevy, the Delta rocket.

At first glance, the shuttle does look cheaper than launching the same payload with the Delta. Let’s say your commercial firm wants to launch four communications satellites in 1986 into geostationary orbit (G.S.O.) 2,000 miles above the equator. At G.S.O. a satellite rotates with the Earth—a satellite placed over Quito, Ecuador, stays over Quito, Ecuador. With the Delta, each launch will cost $25 million. Total price for launching four satellites: $100 million.

The shuttle can carry four times the Delta payload, but it requires a two-stage trip because it orbits a mere 350 miles up, practically skimming the Earth’s surface. To kick your satellite up to G.S.O., you need a Payload Assist Module, or PAM. (The PAM is the part that malfunctioned two flights ago and flung two satellites into the wrong orbit in the process.) Each PAM will cost $4 to $5 million, for a cost of about $18 million for four. From 1986 through 1988, you can book the whole shuttle—enough for your four satellites—for $79.4 million. So for your 1986 shuttle mission to G.S.O., you will pay a total of $97.4 million. You save all of $2.6 million over the cost of Delta rockets.

But what’s important to recognize about the shuttle is that price to customers has no relation to the actual cost of the shuttle. “For realistic missions during the next twenty years or so, the shuttle system is actually more expensive than are conventional, expendable boosters,” Dr. James A. Van Alien, professor of astronomy at the University of Iowa wrote in 1982. The shuttle looks cheaper because NASA subsidizes its missions.

It wasn’t meant to be that way. Shuttle prices were set in 1972, when NASA predicted there would be 572 flights. The problem is that the shuttle won’t fly 572 missions; NASA now estimates only 234 missions before the machine is ready for the Smithsonian. That gives NASA fewer flights over which to amortize the cost of building the shuttles and a shorter time in which to learn to operate more efficiently. As a result, costs have soared—this year, each shuttle launch costs $200 million. NASA had planned to raise the price of post-1988 missions to recoup the money it is losing now but NASA has changed its mind. NASA senior staff engineer Barbara Stone says that by 1988, the shuttle will still cost over $100 million per flight—too much for NASA to charge and stay competitive. “I don’t think we’ll recover those cost underruns,” Stone says.

NASA claims the shuttle can save money another way, by repairing and redeploying ailing satellites. In April, shuttle astronauts repaired the Solar Maximum observatory. But the shuttle can only reach satellites in or near low Earth orbit, which is where Solar Max was stationed. The vast majority of satellites are in G.S.O., a good 21,650 miles beyond the shuttle’s reach. And what NASA does not mention is that there was no reason to build the shuttle to host satellite repair missions. Expendable rockets can do the same job, and they can travel to G.S.O. According to Arthur Koski, spokesman for the Martin-Marietta Corporation, which worked with NASA to repair Solar Max, the only reason rockets can’t do repair missions is that we don’t have any. “Our only manned spacecraft is the shuttle,” says Koski. “And at this point it wouldn’t make much sense to build rockets.”

NASA’s last commercial Delta launch is scheduled for the end of this year. By getting rid of the Delta program NASA will no longer steal business from itself. But the shuttle still faces competition from emerging for-profit rocket companies. NASA is putting the finishing touches on an agreement with a private company, Transpace Carriers Inc., to take over existing contracts for the Delta. The company plans to make its first launch in 1985 or 1986. NASA already has competition from the European Space Agency’s Ariane rocket. Arianespace has one model, the Ariane 3, that can throw half the shuttle payload (or two Delta payloads) into G.S.O. for $25 million, including the boosters. Total cost of a shuttle-sized payload: $50 million. And because Ariane is out to make money, that is not a subsidized price. Western Union, GTE, and INTELSAT among others have launched satellites on Ariane.

Why can Ariane deliver at half the shuttle’s price? “We’re not a man-rated vehicle,” explains Jean Michel Eid, assistant manager of Arianespace in America. It’s people and the life support and safety systems they require that keep the shuttle from lowering the cost of space travel.

Now that the shuttle is working, NASA is at another critical point: the decision of what to do next. Keeping in mind the advantages NASA reaps from manned programs, agency administrator James M. Beggs chose the space station. When he first asked for funds he ran into a wall. The Space Science Board of the National Academy of Sciences said a space station had no scientific purpose. The Pentagon said it had no military purpose. David Stockman, director of the Office of Management and Budget, thought it was too expensive, and the science adviser to the President, George Keyworth, thought it was too boring to generate the kind of excitement the Apollo mission had created. Fortunately for NASA, Beggs found a believer in President Reagan, who endorsed a permanently manned space station in his State of the Union Address and put seed money for it in his 1985 budget.

Beggs convinced Reagan of what has become NASA’s guiding vision: a modern version of manifest destiny that sees Americans living and working in space. This philosophy is almost devoid of any idea about what we will do there. Being there, apparently, is enough. At a November 1983 Congressional hearing, T. F. Rogers of the Office of Technology Assessment testified, “To our knowledge, there is no comprehensive and thoughtful list of goals.” On NASA’s twenty-fifth anniversary in the fall of 1983, Beggs wrote, “1 believe that a space station, is, indeed, an idea whose time has come. Sooner or later, this country is going to take the next logical step in space and will build one. And the sooner we do so, the better it will be for us, because a space station is essential if we are to maintain our preeminence. 1 see a space station as an essential stepping-stone to the future.”

NASA has what seems to be an enlightened attitude toward space, a place where poets and painters as well as scientists can work. “I’m not prejudiced,” says Hans Mark, deputy administrator of NASA. “I see a future where people doing things not associated with space will go there. It is the obligation of any great civilization to support the arts.”

If you happen to be the poet or pioneer chosen to live in space, this idea is exciting and romantic. If you’re the taxpayer signing the lease for this high-rent suburb, however, its appeal pales somewhat. Cost is something space visionaries never seem to think about. Never mind that settling the Sahara would cost far less than housing a large number of people in orbit. Never mind that you could keep thousands of artists from starving on Earth for the price of putting one a little bit closer to the stars. The idea of a space colony allows NASA to view manned missions as their own justification, at the expense of commerce, science, and exploration.

Space travel has never quite lived up to its billing as a technological bonanza, The science and engineering feats it encourages have only limited use here on Earth. Trickle-down technology is not an efficient way to regain our competitive economic edge. And the spin-offs space has given us such as hand-held calculators, digital watches, phone calls via satellite, improved computers—just about everything except Tang—have come from programs that have one thing in common: they were unmanned. “There’s an inverse relationship between the payoff of a mission and the importance of man,” says Wallace A. Berger, staff director of the Senate subcommittee that oversees NASA. “An overemphasis on manned missions forecloses advancing science or producing something of commercial value.”

This is because building new ways to carry men in space offers little of value to earthlings. The shuttle’s efficient engines that burn super-cold hydrogen and oxygen, for example, have no other use except in the dubious cause of the MX missile. In contrast, unmanned planetary probes have spawned new ways to send information and pictures over very long distances, the basis for new communications technologies. Moreover, designing missions for men creates less technological innovation than creating an automated mission to do the same tasks. If an astronaut is around to change the film in an observatory camera, there is no reason to develop the robotics to do it automatically.

Recently, speculation about the commercial benefits of space has centered on taking advantage of space’s zero gravity and near-perfect vacuum to process new metal alloys and pure chemicals. NASA sees the space station as a space factory. But just as with the shuttle, the manned space station faces competition from cheaper, easier to build, unmanned space manufacturing platforms, the key to economically viable space manufacturing is doing the job more cheaply than on Earth. That means robotics. While manned work might be prohibitively expensive, an automated mission at one-twentieth the cost could make space processing profitable. The Fairchild Corporation is developing an unmanned space platform called Leasecraft which it hopes to launch in 1987—about seven years before NASA’s space station is supposed to be ready.

One of the first tests of Leasecraft’s commercial potential will be electrophoresis, a gravity-free way to make pure Pharmaceuticals, developed jointly by Johnson & Johnson and McDonnell Douglas. Electrophoresis is the best-developed space manufacturing process, and manned space station supporters invariably mention it as a project that they could put in orbit. But far from needing a manned space station, electrophoresis is fully automated, needing only periodic human tending—and there is a good chance its manufacturers will sign with Leasecraft, (It’s no surprise that NASA is now exploring the idea of launching an unmanned space platform.)

Instead of encouraging cost-effective automatic work, the space station will subsidize an inefficient method of processing. “It’s like buying an expensive car, pretending it didn’t cost you anything, and comparing it to the cost of taking a taxi,” says Richard Garwin, former science adviser to President Carter, “When you offer free passage, people will take you up on it.” And just as with the shuttle, if NASA stops subsidizing industry and charges prices that reflect the space station’s true costs, it will lose the price war with unmanned platforms.

More harmful than the manned program’s effect on commercial industries is its impact on space science. The space station just won’t support an adequate scientific laboratory. The first problem is that the space station must stay in low Earth orbit, too low for many experiments. For example, the space station can’t do experiments on the solar wind (vast currents of ions that affect the weather and telecommunications) because it can’t reach the solar wind. But more crippling, it is manned. “All experiments and observations can be done equally well or better by instruments than by men,” says Dr. Thomas Gold, a Cornell University physicist. “For observations, the presence of a man is a disaster. He can’t keep still enough.” The advantage of having a telescope where no atmosphere distorts light is lost if there are humans tromping around literally rocking the boat.

There are, of course, experiments you need men for: experiments on men. But that’s about all. Communications and robotics have become sophisticated enough so that experiments can be tended by remote control from Earth about as well as by men in a capsule. Ask scientists what kind of missions they would choose to do their experiments, and they will say small, unmanned (and cheaper) go-anywhere capsules built to the specifications of particular experiments.

The debilitating impact of the shuttle and the space station is even greater where exploration is concerned. Because of the moon shot, the public has come to confuse “exploration” with “manned exploration,” a mistake NASA does little to correct. In fact, unmanned exploration is the best way to expand our space horizons. Take one of NASA’s most ambitious goals, a manned expedition to Mars. Thanks to the Viking Mars lander we have charted Mars’ weather, atmosphere, soil, and volcanoes. For almost any space mission, unmanned probes with cameras and scientific equipment can find as much about a new surface or atmosphere as a man can learn. It’s not the next best thing to being there—it is being there. “Instead of seeing the surface directly, you’d see it through a TV camera,” says NASA’s Dessler. There are only two differences between manned and mechanical exploration. One is that manned missions cost twenty to thirty times more than unmanned missions; Sally Ride on Mars would be nothing more than a $100 billion flag-planter. The other is that to most places we want to go, such as Venus or Jupiter, we can send instruments—and we can’t send men.

The most lofty justification for manned space travel is that it satisfies, as all “Star Trek” fans know, the urge “to boldly go where no man has gone before.” But a mission to Mars would be timidly revisiting a place we went years ago. As an expression of the human spirit, manned space exploration is rather complacent. Preferring a lunar base to real exploration is like Columbus saying to Queen Isabella, “I’ll pass on the ships but why don’t you give me some money to take a Mediterranean cruise?”

Even if we do want to prepare for future manned missions, the space station is the wrong first step. We already know how to acclimate humans to space life, and we know how to build rockets in space. Our challenge is to find a sufficiently powerful propulsion method to travel throughout the solar system. A space station can only launch deep space travel after that problem is solved.

The real Ninas and Pintas today are unmanned observatories and planetary probes. And the cost overruns of the shuttle drained money from their important missions; the space station is threatening to do the same. Because of the shuttle, the United States is not launching a probe to sail through the tail of Halley’s comet in 1986 and gather samples, as the Soviets and Europeans are doing. NASA canceled the Mars Rover, which would have scooted around Mars’ surface and brought back samples from many sites. It canceled the Grand Tour, a satellite mission that would have taken advantage of an alignment of all the outer planets that won’t occur again at least until the year 2110. It canceled the Mariner mission to study the mysteries of Jupiter’s atmosphere and to give us a first glimpse at the moons of Uranus. The United States has withdrawn our satellite from the International Solar Polar Mission leaving just one European probe to fly past regions of the sun which we have never seen before. NASA has also abandoned the Sun Blazer, a proposed craft that would have flown within 4 million miles of the sun’s surface.

Ten years and $20 billion from now, when the space station is operating, what can we expect? Almost certainly, NASA will ask for that manned Mars mission or lunar base, invoking words like “American preeminence” and “fulfilling our destiny.” But what NASA will not talk about is how little its projects will capture the wonder and romance of true space exploration.

Consciousness, sexuality, androgyny, futurism, space, art, music, physics, astrology, democracy, photography, humor, books, movies and more